Analytik NEWS
Das Online-Labormagazin
19.09.2024

27.08.2024

Wasserstoff für eine nachhaltige Wirtschaft

Teilen:


Wasserstoff spielt für die nachhaltige Wirtschaft eine große Rolle - als Energieträger und langfristiger Speicher gleichermaßen. In beiden Funktionen werden Wasserstofftechnologien sich eng mit den erneuerbaren, meist strombasierten Technologien verzahnen und können dann der energieintensiven Industrie und der Energiewirtschaft echten Mehrwert bieten. An der Verzahnung arbeitet Patrick Preuster mit seinem Team nun am Fraunhofer IEG.

"Die chemische Industrie in Deutschland kann schon heute sehr gut mit Wasserstoff umgehen, erzeugt es in ihren Prozessen und setzt ihn für ihre Produkte ein", stellt Prof. Patrick Preuster fest, der am Fraunhofer IEG im Competence Center Verfahrenstechnik forscht und an der Technischen Hochschule Rosenheim lehrt. "Was es aber noch braucht, sind Verfahren, die auch mit den fluktuierenden Energie- und Stoffströmen umgehen können, wie wir sie im zukünftigen Energiesystem erwarten."

Wasserstoff wird als Energiespeicher dazu dienen, fluktuierende Energiequellen zu puffern. Dazu wird Preuster am Fraunhofer IEG eine digitale Toolbox für fluktuierende, lastflexible chemische Prozesse erstellen und Prüfstände im Labor und im Technikum für moderne regelungstechnische Ansätze in diesen Prozessen schaffen, um die notwendigen Prozessdaten zu sammeln. Sein Ziel ist es, das Produktionsprozesse der chemischen Industrie auf die Energieangebote der erneuerbaren Energien Wind und Sonne reagieren, Energie als chemische Reagenzien wie Wasserstoff zwischenspeichern und ihre Produktion stromnetzdienlich anpassen und so quasi als Energiespeicher Angebot und Nachfrage ausgleichen.

Umgekehrt könnten kleinere chemische Anlagen auch direkt an Windkraftfeldern entstehen und Stromüberschüsse direkt vor Ort wirtschaftlich als Wasserstoff für andere Sektoren wie Verkehr oder Fernwärme speichern. Ein Baustein ist seine aktuelle Material- und Verfahrensentwicklung für membranlose, also wartungsarme Elektrolysezellen, die auch für die direkte Meerwasserelektrolyse geeignet ist. "An der Schnittstelle der Sektoren Chemie und Strom entstehen gerade ein spannender Markt und ein zukunftsweisendes Feld für die angewandte Forschung."

Die chemische Industrie elektrifizieren

Preuster kennt aus eigener Praxis die Planung, Simulation und Realisierung von chemischen Anlagen mit unterschiedlichem Automatisierungsgraden und Leistungsklassen bis zu 500 Kilowatt. Ein wichtiger Fokus war die Speicherung von Wasserstoff in organischen Flüssigkeiten (LOHC) für den sehr dynamischen Anwendungsfall der Mobilität, also in Zügen und im Schwerlastverkehr. Stets geht es um die Frage, wie Komponenten wie Katalysatoren, Prozesswärme, Pumpen, Druckregler, Gasreinigung und weitere Aggregate für einen dynamischen Betrieb fit gemacht werden können, um auf aktuelle Stromangebote und -bedarfe zu reagieren und mit lastflexiblen Produktionsketten weiterhin Fein- und Grundchemikalien herzustellen.

Neue Katalyse- und Reaktorkonzepte - nicht nur für Wasserstoff - ermöglichen es Chemieparks und Industrieanlagen, sich netzdienlich im Stromnetz einzubinden und ihre Geschäftsmodelle zukunftssicher zu ergänzen und aufzustellen. Hierfür sind Kenntnisse über die Reaktionstechnik und die Verfahrenstechnik der Prozesse erforderlich, aber auch regelungstechnische Modelle.

"Im Grunde müssen wir Teile der chemischen Industrie elektrifizieren und grüner Wasserstoff aus der Elektrolyse kann dafür ein Schlüssel sein." Dafür will Preuster mit einem Team aus Chemie-Ingenieurinnen, Elektro- und Regelungstechnikern die komplette Verfahrenstechnik über die Wertschöpfungskette vom Strom über Elektrolyseur, Speicher und Brennstoffzelle zurück zum Strom betrachten. "Für jedes Glied der Kette wird es in Zukunft einen Markt geben, auch wenn die Kette als Ganzes selten an einem Ort und zu einer Zeit gebraucht wird", ist sich Preuster sicher.

Seine Professur hat Preuster nun an der Technischen Hochschule Rosenheim aufgenommen, die traditionell gut mit dem Chemiedreieck Burghausen vernetzt ist. "Ich möchte Studierenden ermöglichen, an topaktueller Forschung teilzuhaben." Dazu wird er Abschlussarbeiten, Praktika und Werkstudententätigkeiten an Prüfständen und somit anwendungsorientierte Lehre an realen Projekten ermöglichen. Aber auch die computergestützte Forschung zu digitalen Zwillingen - etwa für die Beschreibung von dynamisch betriebenen Prozessen - soll Teil der Lehre werden. Seine Grundlagenforschung an der Hochschule betrifft die stoffliche Energiespeicherung als Wasserstoff, Ammoniak, Dimethylether und LOHC, die dafür notwendigen chemischen Katalysen in zum Teil mehrphasigen Prozessen sowie die Sicherheit in Wasserstoffanwendungen.

Quelle: Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG