Analytik NEWS
Das Online-Labormagazin
16.09.2024

15.08.2024

Wasser entscheidend für Fluoreszenz von Biosensoren

Teilen:


Warum Kohlenstoff-Nanoröhren fluoreszieren, wenn sie an bestimmte Moleküle binden, haben Forschende aus Bochum und Texas herausgefunden. Die Nanoröhren gelten als vielversprechende Biosensoren, die für Blutzucker-Monitoring oder Covid-19-Tests nützlich sein könnten. Binden sie an bestimmte Moleküle, verändert sich ihre Fluoreszenz.

Was die Licht-Emission erzeugt, haben Forschende der Ruhr-Universität gemeinsam mit einem Team der University of Texas mithilfe der Terahertz-Spektroskopie analysiert. Sie zeigten, dass die Wasserhülle der Biosensoren eine entscheidende Rolle beim Entstehen der Fluoreszenz spielt.

An der Ruhr-Universität Bochum kooperierten die Gruppen von Prof. Dr. Martina Havenith und Prof. Dr. Sebastian Kruß für die Arbeiten, die im Rahmen des Exzellenzclusters "Ruhr Explores Solvation, kurz RESOLV, stattfanden. Maßgeblich beteiligt waren die Doktorandin Sanjana Nalige und der Doktorand Phillip Galonska.

Kohlenstoff-Nanoröhren als Biosensoren

Nanoröhren bestehen aus einer einzigen Kohlenstofflage und sind daher als Bausteine für Biosensoren besonders gut geeignet, wie frühere Studien zeigten. Sie strahlen Licht im nahinfraroten Bereich aus, welches tief ins Gewebe eindringen kann, und sich beim Binden von Molekülen verändert. Ihre Oberfläche lässt sich mit Biopolymeren oder DNA-Fragmenten bestücken, wodurch sie spezifisch mit einem Zielmolekül interagieren. Auf diese Weise lässt sich beispielsweise das Vorhandensein von bestimmten Neurotransmittern detektieren, also Botenstoffen im Gehirn. Obwohl solche Sensoren bereits im Einsatz sind, ist ihr genaues Funktionsprinzip unklar gewesen.

Wasserhülle für Fluoreszenzänderungen entscheidend

Weil die meisten relevanten biologischen Prozesse in wässriger Lösung stattfinden, untersuchten die Wissenschaftler die Kohlenstoff-Nanoröhren in solchen Umgebungen. Mithilfe der Terahertz-Spektroskopie konnten sie detektieren, wie Energie zwischen den Nanoröhren und der wässrigen Lösung fließt. Entscheidend dafür ist die Hydrathülle der Biosensoren, also die Wassermoleküle in unmittelbarer Umgebung der Nanoröhren.

Regt man die Kohlenstoff-Nanoröhren mit Licht an, werden die Nanoröhren zunächst intern angeregt, und anschließend wird ein Teil der Energie als Fluoreszenz abgebeben. Das Forschungsteam zeigte, dass die Energie alternativ an die Hydrathülle abgegeben werden kann. Dabei kommt es zu einem Energiefluss: Nanoröhren, die heller leuchten, transferieren weniger Energie ins Wasser. Nanoröhren, die schwächer fluoreszieren, geben mehr Energie ins Wasser ab.

"Mit der Terahertz-Spektroskopie konnten wir direkt messen, was wir schon lange vermutet hatten", sagt Sebastian Kruß. "Dieses Wissen kann helfen, Biosensoren für ihren Einsatz in der Forschung oder der Medizin zu optimieren, indem wir die Hydrathüllen der Nanoröhren mit in Betracht ziehen." Martina Havenith, Sprecherin des Exzellenzclusters RESOLV, ergänzt: "In dieser interdisziplinären Arbeit haben wir den Fokus nicht auf die Kohlenstoff-Nanoröhren selbst gelegt, sondern auf das Lösungsmittel Wasser. So konnten wir einen bislang unbekannten Zusammenhang zwischen den Veränderungen im Wasser in der Umgebung der Nanoröhren und ihrer Funktion als Biosensor nachweisen. Das ist genau die Art von Forschung, für die unser Exzellenzcluster RESOLV steht."

» Originalpublikation

Quelle: Universität Bochum