Analytik NEWS
Das Online-Labormagazin
16.09.2024

14.08.2024

Kalte Antimaterie für Quanten-aufgelöste Präzisionsmessungen

Teilen:


Warum gibt es nur gewöhnliche Materie im Universum und (fast) keine Antimaterie? Der internationalen Forschungskollaboration BASE am CERN in Genf unter Leitung von Prof. Dr. Stefan Ulmer von der Heinrich-Heine-Universität Düsseldorf (HHU) und unter Beteiligung von Prof. Dr. Jochen Walz von der Johannes Gutenberg-Universität Mainz (JGU) ist in diesem Zusammenhang ein experimenteller Durchbruch gelungen.

Er kann dazu beitragen, die Masse und das magnetische Moment des Antiprotons so präzise wie noch nie zu vermessen - und so mögliche Materie-Antimaterie-Asymmetrien zu erkennen. BASE hat eine Falle entwickelt, mit der einzelne Antiprotonen wesentlich schneller abgekühlt werden als bisher, was die Forschenden nun in der Fachzeitschrift Physical Review Letters erläutern.

Nach dem Urknall vor über 13 Milliarden Jahren war das Universum voll hochenergetischer Strahlung. Aus ihr entstanden ständig Paare von Materie- und Antimaterieteilchen - beispielsweise Protonen und Antiprotonen. Treffen Teilchen und Antiteilchen wieder zusammen, so zerstrahlen sie erneut zu reiner Energie. In der Summe sollten also exakt gleiche Mengen Materie und Antimaterie entstehen und wieder zerstrahlen, in der Summe sollte das Universum weitgehend materielos sein.

Offensichtlich gibt es aber ein Ungleichgewicht - eine Asymmetrie -, denn es gibt materielle Objekte. Es ist mehr Materie als Antimaterie entstanden, im Widerspruch zum Standardmodell der Teilchenphysik. Physiker testen deshalb seit Jahrzehnten das Standardmodell. Dafür benötigen sie auch präziseste Messung fundamentaler physikalischer Größen.

Hier setzt die BASE-Kollaboration ("Baryon Antibaryon Symmetry Experiment") an, an der die Universitäten in Düsseldorf, Hannover, Heidelberg, Mainz, Tokio und die ETH Zürich beteiligt sind, sowie die Forschungslabore CERN in Genf, GSI in Darmstadt, das MPI für Kernphysik in Heidelberg, die Physikalisch-Technische Bundesanstalt in Braunschweig und RIKEN in Wako / Japan. "Die zentrale Frage, der wir nachgehen wollen: Sind Materie- und ihre zugehörigen Antimaterieteilchen exakt gleich schwer und haben sie die exakt gleichen magnetischen Momente, oder gibt es winzige Abweichungen?", erläutert Prof. Dr. Stefan Ulmer, Sprecher von BASE. Er ist Professor am Institut für Experimentalphysik der HHU und forscht zusätzlich am CERN und am RIKEN.

Die Physiker wollen mit extrem hoher Auflösung Spin-Flip-Quantenübergänge (also das Umklappen des Eigendrehimpulses) mit einzelnen Antiprotonen messen. Für größtmögliche Präzision müssen die Antiprotonen dabei ultrakalt und damit extrem bewegungsarm sein. "Aus den gemessenen Übergangsfrequenzen können wir unter anderem das magnetische Moment der Antiprotonen - also sozusagen deren winzige innere Stabmagnete - vermessen", erläutert Ulmer, und: "Wir wollen so mit bisher unerreichter Genauigkeit schauen, ob diese Stabmagnete in Protonen und Antiprotonen dieselbe Stärke aufweisen."

Einzelne Antiprotonen für die Messungen so zu präparieren, dass entsprechende Messgenauigkeiten erreicht werden, ist eine äußert aufwändige experimentelle Aufgabe. Hierbei hat die BASE-Kollaboration nun einen entscheidenden Fortschritt erzielt. Dr. Barbara Maria Latacz vom CERN und Erstautorin der jetzt in Physical Review Letters als "editors suggestion" erschienenen Studie: "Wir benötigen Antiprotonen mit einer maximalen Temperatur von 200 mK, also extrem kalte Teilchen. Nur so sind verschiedene Spin-Quantenzustände unterscheidbar. Mit bisherigen Techniken dauerte es 15 Stunden, um Antiprotonen, die wir aus dem Beschleunigerkomplex des CERN beziehen, so weit abzukühlen. Mit unserer neuen Kühlmethode verkürzen wir diese Zeit auf acht Minuten."

Zwei Penningfallen zu einer "Maxwell-Daemon-Kühldoppelfalle" zusammengeschlossen

Erreicht haben die Forschenden dies, indem sie quasi zwei sogenannte Penningfallen zu einem Gerät zusammenschlossen, zu einer "Maxwell-Daemon-Kühldoppelfalle". Mit ihr ist es möglich, nur die kältesten Antiprotonen gezielt zu präparieren und für die nachfolgende Spin-Flip-Messung zu nutzen; wärmere Teilchen werden aussortiert. So entfällt die Zeit, um wärmere Antiprotonen abzukühlen. Die erhebliche kürzere Kühlzeit ist notwendig, um die nötige Messstatistik in wesentlich kürzerer Zeit zu erhalten, so dass die Messunsicherheiten weiter gesenkt werden können.

Latacz: "Wir brauchen mindestens 1.000 einzelne Messzyklen. Mit unserer neuen Falle heißt dies, dass wir rund einen Monat Messzeit benötigen - im Vergleich zu knapp zehn Jahren mit der alten Technik, was experimentell nicht realisierbar wäre." Ulmer: "Mit der BASE-Falle konnten wir bereits messen, dass sich die magnetischen Momente von Proton und Antiproton um maximal ein Milliardstel - wir sprechen von 10-9 - unterscheiden. Wir konnten die Fehlerrate der Spin-Identifikation um mehr als einen Faktor 1.000 verbessern. In der nächsten Messkampagne hoffen wir, die Genauigkeit im magnetischen Moment auf 10-10 verbessern zu können."

Prof. Ulmer zu den zukünftigen Plänen: "Wir wollen eine mobile Teilchenfalle bauen, mit der wir am CERN in Genf erzeugte Antiprotonen in ein neues Labor an der HHU transportieren können. Dieses ist so eingerichtet, dass wir hoffen dürfen, die Messgenauigkeit um mindestens einen weiteren Faktor 10 zu verbessern." Eine solche Transportfalle zur Untersuchung von Antiprotonen war das Forschungsthema von Dr. Christian Smorra während seiner Zeit an der JGU, wofür er einen ERC Starting Grant erhielt.

"Auch hier in Mainz gibt es einen schönen Fortschritt im Rahmen der Erzeugung ultrakalter Teilchen", erklärt Prof. Dr. Jochen Walz. "Die 'sympathische Kühlung' einzelner Protonen wurde mit lasergekühlten Beryllium-Ionen als 'Kühlmittel' erreicht. Dabei wurden Temperaturen von bis zu 170 mK - nur 170 Tausendstel Grad über dem absoluten Nullpunkt - erreicht. Dies ist ein neuer Temperaturrekord, und die Ergebnisse dieses Experiments wurden ebenfalls in Physical Review Letters veröffentlicht." Die Zukunft der Experimente mit ultrakalten Teilchen sieht vielversprechend und spannend aus: "Diese Messungen sind ein Meilenstein auf dem Weg zur nächsten Generation von hochpräzisen Penning-Fallen-Messungen mit exotischen Teilchen."

» Originalpublikation

» Originalpublikation

Quelle: Universität Mainz