14.04.2023
Grundwasser effizient von Schadstoffen wie Glyphosat befreien
Verunreinigtes Trinkwasser ist eine große Gefahr für unsere Gesundheit. Verschiedene Schadstoffe wie Pestizide, Herbizide, Hormone, Medikamente und andere chemische Verbindungen können mit den derzeit zur Verfügung stehenden Methoden jedoch nicht vollständig aus dem Grundwasser entfernt werden.
Gleichzeitig nimmt die Verunreinigung durch diese Stoffe stetig zu. Ein aktuelles Beispiel dafür ist Glyphosat, das weltweit zur Unkrautbekämpfung eingesetzt wird und potenzielle Gefahren für Mensch und Umwelt birgt.
Ein Team um Prof. Dominik Eder (TU Wien, Institut für Materialchemie) hat nun eine neue Materialklasse entwickelt - sogenannte metallorganische Gerüste (MOFs) - mit denen sich das Herbizid Glyphosat selektiv und effizient aus dem Grundwasser entfernen lässt. Die Ergebnisse publizierten die Forschenden kürzlich in der Fachzeitschrift "Advanced Functional Materials".
Kleines Volumen, große Oberfläche
MOFs bestehen aus winzigen Metalloxidclustern, die durch organische Moleküle zu einem hochporösen, schwammartigen Netzwerk verbunden sind. Sie weisen eine extrem große Oberfläche von bis zu 7000 m2/g auf. "Das bedeutet, dass in einem Gramm MOFs ein ganzes Fußballfeld Platz findet", veranschaulicht Dominik Eder. "Folglich können in den Poren viele Moleküle adsorbiert werden, was MOFs zu idealen Materialien macht, um Moleküle wie CO2, anorganische Salze und organische Schadstoffe direkt aus der Luft oder Wasser zu binden."
Das Besondere an MOFs ist, dass sie je nach Anwendungsfall individuell zurechtgeschnitten werden können. Shaghayegh Naghdi, Erstautorin der Studie, erklärt: "Stellen Sie sich MOFs wie ein großes Gebäude vor, das aus einzelnen kleinen Blöcken besteht. Jeder Block besteht aus Metallatomen oder organischen Molekülen, und man setzt sie wie ein Puzzle zusammen, um die gewünschten Funktionen zu erreichen.''
Mesoporen für große Moleküle
Eine entscheidende Einschränkung von MOFs für ihre Verwendung in flüssigen Medien ist jedoch die Zugänglichkeit aktiver Stellen tief im Inneren des Materials, wo die Adsorptionsprozesse und chemische Reaktionen stattfinden. Um diese Stellen zu erreichen, müssen die Zielmoleküle durch Mikroporen mit Durchmessern von weniger als 1 Nanometer diffundieren, was oft der Größe der Moleküle selbst entspricht. In flüssigen Medien können Lösungsmittelmoleküle diesen Diffusionsprozess erheblich verlangsamen und die Poren verstopfen.
Um dieses Problem zu lösen, hat die Forschungsgruppe eine Strategie entwickelt, um zusätzliche Poren mit einem Durchmesser von bis zu 10 Nanometern, so genannte Mesoporen, in die MOFs einzubauen. Wie dies gelingt? "Wir brennen einen bestimmten Teil der organischen Verbindungsmoleküle selektiv weg", erklärt Naghdi. "Allerdings müssen wir dabei sehr vorsichtig vorgehen, um einen Zusammenbruch der gesamten Mikroporenstruktur zu verhindern." Das Team hat diese Strategie bereits für verschiedene Anwendungen in flüssigen Medien getestet.
Erfolgreiche Entfernung von Glyphosat
In Zusammenarbeit mit Forschenden der University of Northern British Columbia in Kanada untersuchte das Team um Dominik Eder schließlich die Adsorption von Glyphosat aus Grundwasser. Bemerkenswerterweise konnte das neue Material in nur 20 % der Zeit dreimal so viel Glyphosat entfernen wie das derzeit beste Adsorptionsmittel.
Mit Hilfe von Computersimulationen, die am Technion in Israel durchgeführt wurden, entdeckte die Gruppe zudem, dass durch die Entfernung der organischen Bindeglieder neue Metallstellen entstehen. Diese ermöglichen die Bildung von chemischen Bindungen mit Glyphosat und dadurch eine schnellere Diffusion des Zielmoleküls. "Diese Bindungen sind stark genug, um Glyphosat und ähnliche organische Verbindungen sehr schnell und effizient zu adsorbieren. Sie sind jedoch schwach genug, um Glyphosat mit einer einfachen Natriumchlorid-Salzlösung wieder zu entfernen, so dass diese MOFs mehrfach verwendet werden können", erklärt Dominik Eder.
Die Forschungsgruppe plant, weitere MOFs zu entwickeln, mit denen noch andere Schadstoffe adsorbiert oder umgewandelt werden können.
Quelle: Technische Universität Wien