Header
Das Online-Labormagazin
22.09.2021

31.03.2021

Katalysator für die Umwandlung von Kohlendioxid in Chemikalien oder Treibstoffe entwickelt

Teilen:


CO2 lässt sich elektrochemisch in Ausgangsstoffe für die Industrie umwandeln. Bislang fehlen aber Katalysatoren, die über lange Zeit stabil sind. Mit ein paar Tricks könnte sich das Problem lösen lassen.

Einen neuen Katalysator für die Umwandlung von Kohlendioxid in Chemikalien oder Treibstoffe haben Forschende der Ruhr-Universität Bochum und Universität Duisburg-Essen entwickelt. Sie optimierten bereits verfügbare Kupfer-Katalysatoren, um ihre Selektivität und Langzeitstabilität zu verbessern.

Die Ergebnisse beschreibt das Team um Dr. Yanfang Song und Prof. Dr. Wolfgang Schuhmann vom Bochumer Zentrum für Elektrochemie mit dem Team um Prof. Dr. Corina Andronescu von der Duisburg-Essener Arbeitsgruppe Technische Chemie III in der Zeitschrift Angewandte Chemie.

Bor macht Kupfer-Katalysator stabil

Das Klimagas CO2 lässt sich in größere Kohlenstoffverbindungen umwandeln, die als Grundchemikalien für die Industrie oder als Kraftstoffe genutzt werden können. Forschende verfolgen die Idee, CO2 elektrochemisch mithilfe regenerativer Energien umzusetzen. So würden nicht nur nützliche Produkte entstehen; diese würden gleichzeitig auch als Speicher für die erneuerbaren Energien dienen. Kupfer hat sich in früheren Studien bereits als vielversprechender Katalysator herausgestellt, allerdings muss es in Form eines teilweise positiv geladenen Ions vorliegen - und genau das stellt das Problem dar.

Unter herkömmlichen Reaktionsbedingungen wird Kupfer schnell von seiner positiv geladenen Form in den neutralen Zustand umgewandelt, was für die Bildung von Produkten mit mehr als zwei Kohlenstoffatomen ungünstig ist und so den Katalysator deaktiviert.

Das Team aus Bochum und Duisburg-Essen modifizierte daher einen Kupfer-Katalysator mit Bor. Die Forschenden testeten verschiedene Kupfer-Bor-Verhältnisse und bestimmten die optimale Zusammensetzung, um das Entstehen von Verbindungen mit mehr als zwei Kohlenstoffatomen zu begünstigen. Sie zeigten außerdem, dass der Bor-Kupfer-Katalysator bei Stromdichten betrieben werden kann, wie sie im industriellen Maßstab erforderlich wären.

Zink verhindert Korrosionsschäden

Das System setzten sie in Form einer Gasdiffusionselektrode um, in der ein fester Katalysator die elektrochemische Reaktion zwischen der flüssigen und gasförmigen Phase katalysiert. Wichtig dabei ist, dass sich ausreichend CO2 in der Grenzregion zwischen Gas- und Flüssigphase löst. Das gelang den Wissenschaftlern durch den Einsatz eines speziellen Bindemittels.

Eine weitere Herausforderung ist, das System über lange Zeit stabil zu halten. Es gilt beispielsweise, die Korrosion der Elektroden zu verhindern. Zu diesem Zweck integrierten die Chemiker eine sogenannte Opferanode aus Zink in das System. Da Zink ein weniger edles Metall als Kupfer ist, wird dieses zuerst korrodiert, während das Kupfer verschont bleibt.

"Die Kombination aus einem selektiven und aktiven Katalysatormaterial in einer Gasdiffusionselektrode und dem Zusatz des stabilisierenden Zinks ist ein wichtiger Schritt in Richtung der stofflichen Nutzung von CO2", resümiert Wolfgang Schuhmann.

» Originalpublikation

Quelle: Universität Bochum