Analytik NEWS
Das Online-Labormagazin
09.08.2022

04.08.2022

Molekulare Vorgänge und Regulation einzelner Proteine in lebenden Zellen untersuchen

Teilen:


Forscher der Universität Würzburg entwickeln den neue "Photoswitching Fingerabdruck". Eine einzigartige Technologie, die erstmals die Untersuchung molekularer Vorgänge und der Regulation einzelner Proteine in lebenden Zellen mit sub-10 nm räumlicher Auflösung ermöglicht. Die Anwendung erstreckt sich von der biologischen bis hin zur medizinischen Forschung.

Die hochauflösende Fluoreszenzmikroskopie (Super-Resolution Microscopy) erlaubt es Fluoreszenzbilder von Zellen, Organellen und Molekülkomplexen mit bisher unerreichter räumlicher Auflösung aufzunehmen.

Diese Auflösung reicht jedoch nicht, um Proteine mit einer Größe von wenigen Nanometern und ihre Wechselwirkungen mit anderen Molekülen oder die Architektur von Proteinkomplexen aufzulösen. Es limitiert zum Beispiel die Erforschung des molekularen Zusammenspiels der Neuronen in Lern- und Gedächtnisprozessen.

Dynamische Auflösungsgrenzen überwinden

Entwickelt von der Forschungsgruppe von Prof. Dr. Markus Sauer (Rudolf-Virchow-Zentrum und Biozentrum) und Dr. Gerti Beliu (Rudolf-Virchow-Zentrum) der Universität Würzburg, ermöglicht der neue Photoswitching Fingerabdruck die optische Darstellung von dynamischen Wechselwirkungen mit anderen Molekülen in der Zelle.

"Bisher existiert keine Methode, die eine strukturelle optische Auflösung in Zellen im sub-10 nm Bereich verlässlich erlaubt. Durch die Aufklärung dieser Barriere zugrundeliegenden Ursache ist es uns erstmals gelungen, in Kombination mit neuen direkten Markierungsmethoden, eine zelluläre Auflösung von wenigen Nanometern zu realisieren. Dieser Fortschritt ermöglicht die Aufklärung molekulare Funktionen und der Architektur wichtiger Komponenten unserer Zellen", berichtet Sauer.

Einzelmolekül-Lokalisations-Mikroskopiemethoden (single-molecule localization microscopy methods) wie dSTORM, die in der Arbeitsgruppe von Prof. Dr. Markus Sauer entwickelt wurden, ermöglichen Auflösungen im Bereich von 10-20 nm. In Kombination mit strukturierten Beleuchtungsverfahren konnten Lokalisationsgenauigkeiten von bis zu 1 nm für Farbstoffe erreicht werden. Leider konnte diese hohe Lokalisationspräzision nicht in eine räumliche Auflösung von wenigen Nanometern in Zellen übersetzt werden.

Das Problem: Die gängigen Markierungsmethoden, zum Beispiel Immunfärbungen mit einem Antikörper, verursachen einen Abstandsfehler von mehr als 10 nm. Dadurch verhindert die Größe der Markierungsmoleküle eine Auflösung im Nanometerbereich. Die Ursache für die sub-10 nm Auflösungsbarriere war bisher nicht bekannt. "In unserer Publikation konnten wir nun erstmals zeigen, dass die Photoschaltraten (Blinking) der Farbstoffe zwischen einem An- und Aus-Zustand bei Abständen unterhalb von 10 nm aufgrund verschiedener Energietransferprozesse zwischen Farbstoffen stark beeinflusst wird. Hierdurch kommt es während den ersten Sekunden eines Experiments gehäuft zu An-Zuständen und damit verbunden zum schnellen Photobleichen der Farbstoffe, was ihre individuelle Lokalisation erschwert", erklärt Sauer.

"Die verringerte Lokalisationswahrscheinlichkeit der Farbstoffe resultiert daher in einer schlechteren strukturellen Auflösung, als man aufgrund der individuellen Lokalisationsgenauigkeit erwarten würde. Dies ähnelt einem Orchester, indem alle Instrumente zeitgleich am Anfang des Stücks ihre Beiträge spielen; es ist unmöglich, die einzelnen Tonspuren herauszuhören."

Die Fluoreszenzintensitätsspur

Der Photoswitching Fingerabdruck (Photoswitching Fingerprint) und die Fluoreszenzabklingdauer enthalten aber auch Information über die Anzahl der vorhandenen Farbstoffe und, aufgrund der Abstandabhängigkeit der Energietransferprozesse, auch Information über deren Abstände, ohne dass man die einzelnen Farbstoffe optisch auflösen kann. Durch den Einbau unnatürlicher Aminosäuren in multimere Membranrezeptoren durch Erweiterung des genetischen Codes (Genetic Code Expansion) mit anschließender bioorthogonaler Click-Markierung mit kleinen Fluoreszenz-Farbstoffen konnten die Würzburger Forschungsgruppen nun im nächsten Schritt aufzeigen, wie die spezifische ortsgenaue Markierung von Proteinen in Zellen ohne Abstandsfehler mit sub-10 nm Abständen gelingt.

"Durch die Analyse der Photoswitching Fingerprints der multimeren Rezeptoren in der Plasmamembran konnten wir so erstmals Abstände zwischen Rezeptoruntereinheiten im Bereich von 5-7 nm in Zellen abschätzen und die Anzahl der markierten Untereinheiten bestimmen", sagt Beliu.

Molekulare Kommunikation visualisieren und verstehen

Im nächsten Schritt will das Forschungsteam die Photoswitching Fingerprint Analyse optimieren und in Kombination mit der Einzelmolekül-Lokalisations-Mikroskopie mittels strukturierter Beleuchtung und DNA-PAINT zum verlässlichen Super-Resolution Imaging in Zellen mit sub-10 nm Auflösung einsetzen. Dies soll neue Erkenntnisse in der molekularen Organisation zellulärer Strukturen, Organellen und Multiproteinkomplexe sowie der Strukturaufklärung von Proteinkomplexen mit optischen Methoden ermöglichen.

Die neu entwickelte Methode bietet nicht nur einzigartige Einblicke in molekulare Mechanismen der Infektions-, Lipid- und Krebsforschung: Der Photoswitching Fingerabdruck hat auch das Potential, die Dynamik und Komplexität von Rezeptoren im Nervensystem, die an den Synapsen der Neurone für die Signalweiterleitung wichtig sind, realistischer darzustellen. Dieses Zusammenspiel der Neuronen definiert unsere täglichen Lern- und Gedächtnisprozesse. "Es ist daher fundamental wichtig zu verstehen, wie sich dieses molekulare Orchester zusammensetzt und funktioniert", beschreibt Beliu die Bedeutung dieser Forschungsergebnisse.

» Originalpublikation

Quelle: Rudolf-Virchow-Zentrum Würzburg