NMR-spektroskopische Untersuchungen zur Bindung kleiner Moleküle an das Zellzyklusprotein CDC25A
Stadler, Max - Johann Wolfgang Goethe Universität Frankfurt (2010)
Viele verschiedene Funktionen der Zelle werden durch posttranslationale Modifikationen von Proteinen reguliert. Die reversible Phosphorylierung der OH-Gruppen der Aminosäuren Serin, Threonin und Tyrosin ist eine der Möglichkeiten die Aktivität von Proteinen an- und abzuschalten und Interaktion mit Bindungspartnern zu ermöglichen oder zu verhindern. Die Phosphatase CDC25A übernimmt eine zentrale Rolle in der Steuerung des Zellzyklus, unterliegt selbst wiederum einer differenzierten Kontrolle durch Änderung des Expressionslevel, Phosphorylierung und Lokalisation innerhalb der Zelle. Da eine Überfunktion von CDC25A mit einer Vielzahl von verschiedenen Krebserkrankungen assoziiert ist, wird die Entwicklung starker und selektiver Inhibitoren, die auch in vivo wirksam sind, vorangetrieben. Die strukturellen Grundlagen selektiver Inhibition sind allerdings noch unzureichend erforscht.
Im ersten Teil dieser Arbeit wurden die Grundlagen für eine erfolgreiche Durchführung von NMR-Experimenten gelegt, für die Proteinproben mit hoher Konzentration und Langzeitstabilität benötigt werden. CDC25A kann nicht in der vollen Länge exprimiert werden und wäre als Vollkonstrukt auch zu groß, um effektiv per NMR untersuchbar zu sein. Durch Erzeugung diverser Konstrukte der katalytischen Domäne von CDC25A konnte ein Expressionslevel erreicht werden, der die Erzeugung ausreichender Mengen an Protein praktikabel macht.
Neben des oftmals geringen Expressionslevels ist ein weiteres Problem bei NMR-spektroskopischen Untersuchungen vieler Phosphatasen deren geringe Stabilität während der Aufreinigung und in der endgültigen Probe. Durch Optimierung der Pufferbedingungen für den Zellaufschluss in Bezug auf pH-Wert, Salzkonzentration und Art des Kations per "Incomplete Factorial Design" konnte die Ausbeute an löslichem Protein erheblich gesteigert werden. Die Verwendung dieser Pufferbedingungen während der ersten Aufreinigungsschritte verminderte auch die Tendenz des Proteins während der Chromatografie auszufallen. Die Zusammensetzung des Puffers für die endgültige NMR-Probe wurde schließlich durch das aus der Kristallografie entlehnte Verfahren der Dampfdiffusion ebenso in Hinblick auf pH-Wert, Salzkonzentration und Art des Anions optimiert. Unter diesen optimierten Pufferbedingungen wurde die katalytische Aktivität des Proteinkonstrukts anhand der Hydrolyse von para-Nitrophenylphosphat nachgewiesen.
Acht Substanzen wurden auf Inhibition dieser katalytischen Aktivität getestet. Das natürliche Substrat Phosphotyrosin zeigte eine kompetitive Hemmung, zwei starke und ein schwacher Inhibitor zeigten entsprechend verminderte Reaktionsraten. Von den restlichen 4 Substanzen (Inhibitoren anderer Protein-Tyrosin-Phosphatasen und strukturelle Verwandte) zeigten 3 weitere eine starke Wirkung. Diese hohe Promiskuität gegenüber Inhibitoren stellt ein großes Problem für die strukturgetriebene Wirkstoffentwicklung bei CDC25A und generell aller Phosphatasen dar. Nach Erhalt der fertigen Proben zeigten erste 2D-NMR-Spektren eine geringer als zu erwartende Zahl von Signalen und starke Überlappungen der sichtbaren Signale. Um auszuschließen, das Dimerisierung oder unspezifische Aggregation hierfür verantwortlich sind, wurden DOSY-Spektren gemessen. Aus der Eigendiffusionsrate ergibt sich ein hydrodynamischer Radius, der mit durch HYDROPRO simulierten Werten übereinstimmt und sich deutlich von dem des putativen Dimers absetzt. Daher wird davon ausgegangen, dass die Signalverluste im NMR nicht durch Dimerisierung oder Aggregation ausgelöst werden.
Um die Bindung von Inhibitoren auch durch NMR-Spektroskopie nachzuweisen, wurden Saturation-Transfer-Difference-Experimente (STD) durchgeführt. In diesen war aber sowohl für das natürliche Substrat Phosphotyrosin als auch für alle im Enzymtest aktiven Inhibitoren kein Effekt nachweisbar. Dies weist auf eine sehr hohe koff-Rate der Bindung an das Protein hin oder auf eine irreversible chemische Modifikation des aktiven Zentrums, die bis zum Zeitpunkt der Messung bereits abgeschlossen war. Für die strukturbasierte Wirkstoffentwicklung werden spezifische Interaktionspunkte auf der Proteinoberfläche gesucht. Hierfür wurden 15N-HSQC-Spektren mit und ohne Bindungspartner gemessen und die Veränderungen der chemischen Verschiebung bestimmt ("chemical shift perturbation"). Es konnten für Phosphotyrosin und die beiden starken Inhibitoren BN82002 und NSC663284 signifikante Veränderungen nachgewiesen werden. Für alle drei Moleküle gab es sowohl komplett einzigartige Veränderungen als auch paarweise übereinstimmende als auch ein Signal das für alle 3 übereinstimmt.
Neben den Inhibitoren wurden drei Peptide auf spezifische Interaktion getestet. Das erste entspricht der Zielsequenz des natürlichen Substrats CDK, die anderen beiden sind Teile der Sequenz von CDK an einer nachgewiesenen als auch einer putativen sekundären Interaktionsfläche der beiden Proteine. Auch für die drei Peptide konnten wie für die Inhibitoren individuelle als auch übereinstimmende Signalveränderungen nachgewiesen werden. Als Voraussetzung für die Bestimmung der Oberflächenkontakte, die für die spezifische Bindung von Substrat, Inhibitoren und Interaktionspeptiden nötig sind, wird eine Zuordnung der Signale des 15N-HSQC-Spektrums zu den Aminosäureresten des Proteins benötigt. Hierzu wurden 3D-Tripelresonanz-NMR-Experimente an 15N, 13C-markierten Proben (zusätzlich auch noch 2H-markierte Proben zur Unterdrückung von Relaxationseffekten) durchgeführt. Um die Zuordnung zu unterstützen wurden außerdem Proben mit individuell 15N-markierten Aminosäuren hergestellt, um einem Signal im HSQC zumindest den Typ der Aminosäure zuordnen zu können. Aufgrund der trotz Pufferoptimierung, Deuterierung des Proteins und verringerter Signalüberlagerung in den Spektren der individuell markierten Proben zu geringen Anzahl an Signalen konnten nur kurze Bereiche der Aminosäuresequenz zugeordnet werden. Aufgrund dieser Basis konnte kein aussagekräftiges Mapping erzielt werden.