Analytik NEWS
Das Online-Labormagazin
13.06.2024

16.06.2023

Neue Methode zur verlässlichen Planung von Synthesen

Teilen:


Kreuzkupplungsreaktionen - Reaktionen, bei denen zwei Fragmente miteinander verbunden werden - sind ein wertvolles Werkzeug bei der Synthese organischer Moleküle. Die Anwendungen reichen von der Arzneimittelentwicklung und der Synthese von in der Natur vorkommenden Molekülen bis hin zur Materialwissenschaft.

Trotz vieler bekannter Methoden blieb es eine Herausforderung für neue Reaktionen die richtigen Bedingungen zu finden. Angesichts der zahlreichen Faktoren, die das Reaktionsergebnis beeinflussen können, wie etwa die Anwesenheit oder Abwesenheit von Ligandenmolekülen, Katalysatorvorläufern, Basen und anderen Additiven ist die Optimierung eine mühsame Aufgabe.

Maschinelles Lernen und künstliche Intelligenz sind neue vielversprechende Ansätze, um optimale Reaktionsbedingungen vorherzusagen, aber das Training solcher Modelle ist ebenfalls mit erheblichem Aufwand verbunden.

Forschende der Universität Regensburg unter der Leitung von Prof. Dr. Burkhard König fanden in Kooperation mit dem Zelinisky Institut in Moskau eine Lösung für dieses Problem, die einen ganz anderen Weg geht: Die Reaktionsparameter wurden auf ein Minimum reduziert und nur die beiden Reaktionspartner, die verknüpft werden sollen, werden mit einem einfachen Nickelsalz und einem Farbstoff unter Belichtung mit sichtbarem Licht zur Reaktion gebracht.

Zur Stabilisierung des Nickelkatalysators werden keine Zusatzstoffe zugesetzt, wie dies in den meisten konventionellen Methoden der Fall ist. Unter den Reaktionsbedingungen bildet sich eine dynamische Mischung sehr vieler Metallkomplexe, deren elektronischer Zustand durch den Photokatalysator und die aufgenommene Lichtenergie so eingestellt wird, dass katalytische Reaktionen einsetzen. Die Ergebnisse der jahrelangen Forschung wurden jetzt im Fachmagazin "Nature" veröffentlicht.

Das Prinzip ist vergleichbar mit einem Jonglierkunststück, durch das der Photokatalysator und die Lichtenergie immer wieder Metallkomplexe, wie hochgeworfene Bälle beim Jonglieren, in die katalytisch aktive Form bringen. Da die Lichtenergie nur zur Aktivierung der Katalysatoren benötigt wird und diese ohne Stabilisierung sehr reaktiv sind, gelingen energieeffiziente, schnelle Reaktionen. Katalysatoren, die ihre Aktivität verlieren (im Bild des Jonglierkunststücks sind dies heruntergefallene Bälle), werden durch die Lichtenergie kontinuierlich repariert, so dass nur äußerst geringe Mengen des Katalysatormetalls Nickel benötigt werden.

Da die Reaktionsparameter auf ein Minimum beschränkt wurden, gelang es für alle Molekülklassen Reaktionsbedingungen zu identifizieren, die jetzt eine verlässliche Planung von Synthesen erlauben. Das neue Reaktionsprinzip wird als adaptive dynamische homogene Katalyse oder kurz AD-HoC bezeichnet und leistet einen wichtigen Beitrag zur Entwicklung energieeffizienter, effektiver, und damit nachhaltiger, chemischer Reaktionen.

Das Projekt läuft seit etwa drei Jahren. In dieser Zeit wurden zahlreiche Experimente durchgeführt, um die zentrale Entdeckung weiterzuentwickeln und zu bestätigen. Die systematische Klassifizierung von Reaktionspartnern war ein Durchbruch und eine besondere Analysemethode der russischen Kooperationspartner - die in-situ-Massenspektrometrie - half die dynamische Natur der katalytischen Systeme zu verstehen.

In weiteren Arbeiten soll nun das Konzept auf andere Metallionen, wie Kupfer, Kobalt oder Eisen, und andere Reaktionstypen, wie die Aktivierung von Kohlenstoff-Wasserstoff Bindungen erweitert werden. Darüber hinaus glauben die Forscher, dass die Vorhersagbarkeit der Reaktionsbedingungen zusammen mit der Einfachheit und Effizienz dieser Methode den Einsatz in der Industrie ermöglichen wird, entweder für die Synthese von pharmazeutischen Wirkstoffen (APIs), die normalerweise eine zeitaufwändige Reihe von Optimierungsschritten erfordert, oder für die Funktionalisierung von Biomolekülen oder für energieeffiziente synthetische Transformationen in großem Maßstab.

» Originalpublikation

Quelle: Universität Regensburg