Analytik NEWS
Das Online-Labormagazin
14.11.2024

13.09.2019

Nanopartikel in Lithium-Schwefel-Akkus mit Neutronen aufgespürt

Teilen:


Ein HZB-Team hat erstmals mit Hilfe von Neutronenexperimenten präzise analysiert, wie und wo sich Nanopartikel aus Lithiumsulfid und Schwefel im Lauf der Ladezyklen an den Batterie-Elektroden abscheiden. Die Ergebnisse können dazu beitragen, die Lebensdauer von Lithium-Schwefel-Akkus zu erhöhen.

Lithium-Schwefel-Akkus gelten als vielversprechende Kandidaten für die nächste Generation von Energiespeichern. Sie besitzen eine theoretische gravimetrische Energiedichte, die fünfmal höher ist als die der derzeit besten Lithium-Ionen-Akkumulatoren. Und sie funktionieren sogar bei Minusgraden bis -50 °C. Außerdem ist Schwefel preiswert und umweltfreundlich. Allerdings sinkt bislang mit jedem Lade-Entladezyklus die Kapazität stark ab, sodass solche Batterien noch nicht langlebig sind.

Kapazitätsverlust durch Reaktionsprodukte

Der Kapazitätsverlust wird durch komplizierte Reaktionsprozesse an den Elektroden im Inneren der Batteriezelle verursacht. Daher ist es besonders wichtig, die Abscheidung und das Auflösen des Lade- (Schwefel) und Entladeproduktes (Lithiumsulfid) genau zu verstehen. Während sich Schwefel makroskopisch abscheidet und sich daher mit bildgebenden Verfahren oder Röntgenbeugung sehr gut während des Zyklierens untersuchen lässt, ist Lithiumsulfid aufgrund einer Partikelgröße im sub-10-nm-Bereich nur schwer zu detektieren.

Neutronen zeigen, wo sich die Nanopartikel ablagern

Diesen Einblick liefern nun erstmals Untersuchungen an der Neutronenquelle BER II am HZB. Dr. Sebastian Risse hat mithilfe einer selbst entwickelten Messzelle Lithium-Schwefel-Batterien während der Lade- und Entladezyklen (operando) mit Neutronen durchleuchtet und zeitgleich weitere Messungen (Impedanzspektroskopie) durchgeführt.

Dadurch konnte er mit seinem Team das Auflösen und Abscheiden von Lithiumsulfid während zehn Entlade/Ladezyklen sehr genau analysieren. Da Neutronen stark mit Deuterium (schwerer Wasserstoff) wechselwirken, verwendeten die Forscher in der Batteriezelle ein deuteriertes Elektrolyt, um die beiden festen Produkte Schwefel und Lithiumsulfid sichtbar zu machen.

Überraschendes Ergebnis

Das Fazit der Forscher: "Wir sehen, dass die Lithiumsulfid- oder Schwefelabscheidungen nicht im Inneren der mikroporösen Kohlenstoffelektroden stattfinden, sondern auf der äußeren Oberfläche der Kohlenstofffasern", sagt Risse. Diese Ergebnisse geben wertvolle Hinweise für die Entwicklung besserer Batterieelektroden.

» Originalpublikation

Quelle: Helmholtz-Zentrum Berlin (HZB)