Analytik NEWS
Das Online-Labormagazin
02.07.2024

02.07.2014

Organische Halbleiter ermöglichen effizientere Solarzellen

Teilen:


Marburger Physiker haben herausgefunden, wie die Anordnung der Moleküle in organischen Halbleitern die Besetzung energiearmer Zustände begünstigt oder hemmt, die ihrerseits den Wirkungsgrad von Solarzellen bestimmen. Hierfür kombinierten die Forscher das Know-how ihrer Arbeitsgruppen und nutzten modernste Ultrakurzzeitspektroskopie, um diese Prozesse in hauchdünnen Molekülfilmen zu beobachten.

"Molekulare Materialien gelten derzeit als Hoffnungsträger künftiger optoelektronischer Anwendungen", erklärt Professor Dr. Gregor Witte von der Philipps-Universität, der an der aktuellen Publikation beteiligt ist. "So haben organische Leuchtdioden bereits die Marktreife erreicht und werden beispielsweise in Displays von Mobiltelefonen oder in Fernsehgeräten eingesetzt." Auch der umgekehrte Prozess werde derzeit intensiv untersucht, also die Umwandlung von Licht in elektrischen Strom mittels molekularer Materialien - die so genannte organische Photovoltaik.

Regt man Halbleiter mittels Licht an, so bilden sich Paare, die aus einem Elektron und einer Fehlstelle ohne Elektron bestehen - man spricht von Exzitonen. Molekulare Materialien erlauben den Zerfall eines Exzitons in zwei niederenergetischere, wodurch die Anzahl der angeregten Ladungsträger verdoppelt wird. Dieser "exciton fission"-Prozess ermöglicht höhere Wirkungsgrade als in Solarzellen aus anorganischen Materialien.

Die Marburger Wissenschaftler machten sich daran, den zugrunde liegenden Mechanismus zu identifizieren. Dazu untersuchten die Physiker hochkristalline, molekulare Halbleiterfilme von 50 Nanometer Dicke - das entspricht etwa einem Tausendsten der Breite eines Haares. Die Filme wurden auf transparenten Salzkristallen abgeschieden, um gezielt molekulare Ordnung zu erzwingen und damit alle Richtungen und Orientierungen optisch untersuchen zu können.

"So konnten wir erstmals eine Verbindung zwischen strukturellen und elektrischen Eigenschaften herstellen", sagt Mitverfasser Privatdozent Dr. Sangam Chatterjee. "Dazu haben wir mit unserem Lasersystem die Kristalle aus allen Richtungen in Zeitlupe beobachtet und konnten genau sehen, in welchen Zuständen sich gerade Exzitonen befinden." Die Forscher verfolgten so die zeitliche Entwicklung der Exzitonenverdopplung mit Femtosekunden-Zeitauflösung. "Dadurch konnten wir insbesondere den fundamentalen Zusammenhang zwischen dem molekularen Packungsmotiv und der 'exciton fission' zeigen", führt Witte aus: "Während eine parallele Stapelung diesen Prozess begünstigt, wurde er entlang kristalliner Achsen mit molekularer Zickzack-Anordnung nicht beobachtet." Die Wissenschaftler hoffen, dass ihre Forschungsarbeit dazu beiträgt, Solarzellen effizienter zu machen.

» Originalpublikation

Quelle: Universität Marburg