06.12.2012
Wechselwirkungen zwischen Proteinen und DNA in lebenden Zellen untersuchen
Mit einer neuen Messmethode ist es Heidelberger Wissenschaftlern gelungen, Wechselwirkungen zwischen Proteinen und DNA im Zellkern mit einer Zeitauflösung von einer tausendstel Sekunde zu verfolgen. Gemessen werden konnte damit in lebenden Zellen die Bindung hochspezialisierter Proteinkomplexe, die die räumliche Struktur der Erbinformation gezielt verändern und so das Auslesen der DNA-Information kontrollieren. Die Arbeiten von Privatdozent Dr. Karsten Rippe und seinem Team wurden am BioQuant-Zentrum der Universität Heidelberg und am Deutschen Krebsforschungszentrum durchgeführt. Ihre Forschungen haben gezeigt, dass die Positionierung von Nukleosomen - dies sind Komplexe aus DNA-Strängen und speziellen Proteinen - ein genau geregelter molekularer Prozess ist. Eine Fehlregulation kann mit verschiedenen Krebsarten in Verbindung gebracht werden. Die Ergebnisse dieser Untersuchungen wurden in der Fachzeitschrift PNAS veröffentlicht.
Im menschlichen Genom sind die DNA-Stränge um bestimmte Verpackungsproteine - die Histone - gewickelt. Zwischen diesen als Nukleosomen bezeichneten Komplexen befinden sich DNA-Bereiche, die frei von Histonen sind und die die Nukleosomen wie auf einer Perlenkette verbinden. "Die Aktivierung eines Gens erfordert frei zugängliche DNA. Wird die entsprechende DNA im Nukleosom verdeckt, ist das Gen oft abgeschaltet", erläutert Dr. Rippe. "So geben die Positionen der Nukleosomen das Auslesemuster der DNA-Sequenz vor. Die freie DNA zwischen zwei Nukleosomen ist leichter zugänglich als die DNA-Bereiche in einem Nukleosom." Molekulare Maschinen, sogenannte Chromatin Remodeler, können unter Energieverbrauch Nukleosomen entlang der DNA-Kette verschieben. Dadurch etablieren sie Auslesemuster, die zusammen mit anderen Faktoren das aktive DNA-Programm der Zelle bestimmen.
Die Wissenschaftler um Karsten Rippe untersuchen mit Hilfe von Fluoreszenzmikroskopie-Verfahren, wie die Chromatin Remodeler das Auslesen der Erbinformation steuern. Dabei konnten sie messen, dass in einer menschlichen Zelle die meisten der rund eine Million Chromatin Remodeler immer wieder nur kurz an ein Nukleosom binden, um zu testen, ob alle rund 30 Millionen Nukleosomen in der richtigen Position sind. Um die Arbeitsweise dieser molekularen Maschinen verstehen zu können, war eine neue Messmethode erforderlich. "Wir mussten kurze Bindungsereignisse mit einer Auflösung von einer tausendstel Sekunde aufzeichnen und gleichzeitig auch die selten auftretenden Reaktionen mit einer Bindungszeit von mehreren Sekunden oder gar Minuten nachweisen", erläutert Karsten Rippe. Aus einer Idee des Doktoranden Fabian Erdel entstand dafür die Methode 3PEA für "Pixel-wise Photobleaching Profile Evolution Analysis", die für Messungen in lebenden Zellen eingesetzt werden kann.
In seinen Experimenten brachte Fabian Erdel die künstliche Fluoreszenzmarkierung der Chromatin Remodeler durch Laserbestrahlung zum Erlöschen. Dabei beobachtete er, dass durch die so "gebleichten" Proteine ein "Schatten" entstand, wenn sie sich während der Aufzeichnung des Bildes bewegten. Die Form dieses Schattens hing davon ab, wie stark die Bewegung der Chromatin Remodeler durch Bindung an Nukleosomen verlangsamt wurde. "Es war nicht einfach, das Schattenbild in die Bindungsdauer umzurechnen, aber die Mühe hat sich gelohnt: Unsere Methode hat neue vielversprechende Anwendungsmöglichkeiten, weil wir damit die Bindung von Proteinen in lebenden Zellen sehr schnell und sehr genau messen können", erklärt Fabian Erdel.
Mithilfe von 3PEA-Messungen haben die Forscher gezeigt, dass sich ein einzelner Chromatin Remodeler innerhalb nur einer Sekunde fast durch den gesamten Zellkern bewegt und dabei über 300 Nukleosomen testet - meistens ohne aktiv zu werden. Nur manchmal bindet die molekulare Maschine für einige Sekunden oder sogar Minuten an ein Nukleosom, um es dann auf der DNA zu verschieben. In einem nächsten Schritt will die Forschungsgruppe von Dr. Rippe die Signale entziffern, die die Chromatin Remodeler an bestimmten Stellen des Genoms aktivieren.
Quelle: idw / Universität Heidelberg