Analytik NEWS
Das Online-Labormagazin
16.10.2024
Glossar durchsuchen

Linksammlung durchsuchen

Untersuchung Karbohydrat-bindender Proteine mit hoher zeitlicher und räumlicher Auflösung

Göhler, Antonia - Julius-Maximilians-Universität Würzburg (2013)


Das menschliche Genom verschlüsselt 30000 bis 40000 Proteine, von denen ein Großteil kovalent gebundene Karbohydrat-Gruppen an Asparagin-, Serin-, Threonin- oder Hydroxylysin-Resten trägt. Diese sogenannten Glykoproteine sind allgegenwärtige Bestandteile der extrazellulären Matrix von Zelloberflächen. Sie steuern Zell-Zell- und Zell-Matrix-Kommunikationen, können bei der roteinfaltung helfen bzw. die Proteinstabilität erhöhen oder Immunantworten regulieren. Die Auslösung von biologischen Prozesse erfordert aber Übersetzer der zuckerbasierten Informationen. Solche Effektoren sind die Lektine, unter ihnen auch die Galektine. Galektine binden spezifisch β-Galaktosen, weisen strukturelle Übereinstimmungen in der Aminosäuresequenz ihrer Zuckererkennungsdomänen (CRDs) auf und zeigen ein "jelly-roll"-Faltungsmuster, bestehend aus einem β-Sandwich mit zwei antiparallelen Faltblättern. Strukturell werden die CRDs in drei verschiedenen, topologischen Formen präsentiert. Proto-Typen existieren als nicht-kovalent verknüpfte Dimere der CRDs, Chimera-Typen besitzen neben der CRD eine Nicht-Lektin-Domäne und bei den Tandem-Repeat-Typen sind zwei verschiedene CRDs über ein kurzes Linker-Peptid kovalent verbunden. Galektine werden sowohl in normalem wie auch pathogenem Gewebe exprimiert und das zunehmende Wissen über die Beteiligung an verschiedenen Krankheiten und Tumorwachstum liefert die Motivation, strukturelle Aspekte und die Vernetzung von Lektinen detailliert, insbesondere im Hinblick auf ihre intrafamiliären Unterschiede, zu untersuchen.

Durch die Kombination verschiedener Spektroskopie-Techniken mit hoher zeitlicher und räumlicher Auflösung, basierend auf der Verwendung von Fluorophoren (intrinsisch und extrinsisch), werden in dieser Arbeit die Eigenschaften von Galektinen näher untersucht. Mit Fluoreszenz-Korrelations-Spektroskopie (FCS) und Anisotropie-Messungen wird gezeigt, dass eine Liganden-Bindung bei Proto-Typ-Galektinen mit einer Verringerung des hydrodynamischen Radius einhergeht. Bei Tandem-Repeat- und Chimera-Typen bleibt der Radius konstant. Dafür skaliert die Diffusionskonstante von Tandem-Repeat-Typen anormal mit der molaren Masse. Die Anisotropie-Messungen werden parallel zu den FCS-Messungen durchgeführt, um einen Einfluss des Fluoreszenzmarkers auszuschließen. Mit Hilfe dieser Technik wird außerdem gezeigt, dass unterschiedliche Dissoziationskonstanten und Kinetiken für den Bindungsprozess innerhalb der Proto-Typ-Gruppe möglichweise auf unterschiedliche Konformationsdynamiken zurückgehen. Der Vergleich von hGal-1 und cG-1B verdeutlicht, dass strukturelle Ähnlichkeiten zwar ein identisches Bindungsverhalten hervorrufen können, der Oxidationsprozess der Proteine aber unterschiedlich ablaufen kann. Beide Methoden können so als sehr sensitive Techniken zur Untersuchung von Strukturmerkmalen bei Galektinen etabliert werden, wobei die Übertragbarkeit auf andere Glykoproteine gewährleistet ist.

Weiterhin gilt Quervernetzung als eine der wichtigsten Eigenschaften von Galektinen, da durch die Vernetzung von Glykoproteinen auf der Zelloberfläche Signalwege aktiviert und Immunantworten reguliert werden. Um die räumliche organisation und Quervernetzung von hGal-1 auf den Oberflächen von Neuroblastomzellen nachzuweisen, eignet sich das hochauflösende Mikroskopieverfahren dSTORM sehr gut. Durch Verwendung des photoschaltbaren Fluorophors Alexa647 als spezifischem Marker für hGal-1, einem Standard-Weitfeld-Aufbau und verschiedenen Analyseverfahren, kann eine Clusterformation von hGal-1 auf der Zelloberfläche bestätigt werden. hGal-1 bildet Cluster mit einem mittleren Durchmesser von 81±7 nm aus. Der Durchmesser ist unabhängig von der Konzentration, während die Anzahl der Cluster davon abhängt. Für die Clusterausbildung ist ein Startpunkt, also eine minimale Dichte der Galektin-Moleküle, notwendig. Durch Blockierung der CRDs mit Laktose wird die Clusterbildung unterdrückt und die Spezifität der CRDs gegenüber β-Galaktosen erneut herausgestellt. Anders als dimeres hGal-1 binden Monomere deutlich schlechter an die Membranrezeptoren. Es werden keine Cluster ausgebildet, eine Quervernetzung von Membranrezeptoren ist nicht möglich. Außerdem kann es durch die Monomere zu einer vollständigen Markierung und damit Abkugellung der Zellen kommen. Möglicherweise wird der Zelltod induziert.

Hochauflösende Mikroskopieverfahren sind durch den Markierungsprozess limitiert. Die bioorthogonale Click-Chemie eröffnet jedoch neue Möglichkeiten zur Markierung und Visualisierung von Biomolekülen, ohne die Notwenigkeit genetischer Manipulationen. Es werden modifizierte Zuckermoleküle in die Zellmembranen eingebaut, über eine 1,3-polare Cycloaddition mit einem Alkin markiert und ihre Verteilung mit Hilfe von dSTORM untersucht. Es wird nachgewiesen, dass die Zuckermoleküle in Clustern auftreten und Click-Chemie trotz dem Katalysator Kupfer an lebenden Zellen durchführbar ist. Die Bewegung der Gesamtcluster wird mittels Mean Square Displacement aufgeschlüsselt und eine Diffusionskonstante für Cluster im Bereich von 40 - 250 nm bestimmt.

Zusammenfassend stellt die Kombination verschiedener Spektroskopie-Techniken ein gutes Werkzeug zur Untersuchung von Karbohydrat-bindendenden Proteinen mit hoher räumlicher und zeitlicher Auflösung dar und ermöglicht einen neuen Einblick in die Biologie der Galektine.


» Volltext