Analytik NEWS
Das Online-Labormagazin
19.07.2024

10.11.2023

Bakterieller Stoffwechsel auf Phosphorbasis - neu und zugleich uralt

Teilen:


Die Geschichte beginnt mit einem Blatt Papier, Ende der 1980er-Jahre. Auf diesem Blatt Papier errechnete ein Wissenschaftler, dass durch die Umwandlung der chemischen Verbindung Phosphit zu Phosphat genügend Energie freigesetzt werden müsste, um den Energieträger der Zelle - das Molekül ATP - zu bilden.

Es müsste also möglich sein, dass ein Mikroorganismus sich auf diese Weise mit Energie versorgt. Anders als die meisten Lebewesen auf unserem Planeten wäre dieser Organismus nicht auf eine Energiezufuhr durch Licht oder aus der Zersetzung organischer Stoffe angewiesen.

Tatsächlich konnte der Wissenschaftler einen solchen Mikroorganismus aus der Umwelt isolieren. Sein Energiestoffwechsel basiert auf der Oxidation von Phosphit zu Phosphat - genau wie anhand der Berechnung vorhergesagt. Nur: wie genau läuft der biochemische Mechanismus ab? Bedauerlicherweise blieb das notwendige Schlüsselenzym, um die Biochemie hinter dem Vorgang zu verstehen, verborgen - und das Rätsel blieb lange Jahre ungelöst.

In den folgenden drei Jahrzehnten blieb es daher bei dem Zettel in der Schublade; der Forschungsansatz wurde eher beiläufig weiterverfolgt. Die Überlegung ging dem Wissenschaftler aber nicht aus dem Kopf. Der Wissenschaftler ist Bernhard Schink, Professor am Limnologischen Institut der Universität Konstanz. Drei Jahrzehnte, nachdem er die Berechnung auf dem Papier angestellt hatte, bringt ein unerwarteter Fund den Stein von Neuem ins Rollen ...

Eine Kläranlage, ein unerwarteter Fund und eine neue Spezies

Was viele Jahre im Hinterkopf schlummerte, wurde 2021 schließlich gefunden: ausgerechnet in einer Kläranlage in Konstanz, nur wenige Kilometer von Bernhard Schinks Labor entfernt. Der Konstanzer Biologie-Doktorand Zhuqing Mao untersuchte eine Klärschlammprobe und stieß darin auf einen zweiten Mikroorganismus, der seine Energie ebenfalls aus Phosphit bezieht. Die Konstanzer Biologen um Bernhard Schink setzten dieses Bakterium in eine Umgebung, in der es ausschließlich Phosphit als Nahrungsquelle hat. Und tatsächlich: die Bakterienpopulation wuchs.

"Dieses Bakterium lebt von der Oxidation des Phosphits, und soweit wir wissen sogar ausschließlich von dieser Reaktion. Es deckt damit seinen Energiestoffwechsel ab und kann zugleich aus CO2 seine Zellsubstanz aufbauen. Es ist ein autotropher Organismus, wie eine Pflanze. Es braucht aber kein Licht wie eine Pflanze, sondern bezieht seine Energie aus der Phosphit-Oxidation", beschreibt Schink das Bakterium. Überraschenderweise stellte sich heraus: Das Bakterium ist nicht nur eine neue Spezies, sondern bildet sogar eine gänzlich neue Gattung an Bakterien.

Dem biochemischen Mechanismus auf der Spur

Von da an ging es Schlag auf Schlag. Ein ganzes Netzwerk an Konstanzer Forschenden widmete sich der Ergründung des Rätsels: darunter Bernhard Schink, Nicolai Müller, David Schleheck, Jennifer Fleming und Olga Mayans. Sie fertigten eine Reinkultur dieses neuen Bakterienstamms an und konnten darin schlussendlich das Schlüsselenzym identifizieren, das die Oxidation von Phosphit zu Phosphat in Gang setzt.

"Der Knoten ist geplatzt durch Nicolai Müller und seine Enzymexperimente", schildert David Schleheck. Nicolai Müller gelang es, die Enzymaktivität eindeutig nachzuweisen und dadurch dem biochemischen Mechanismus rund um das Schlüsselenzym auf die Spur zu kommen. Olga Mayans und Jennifer Fleming erstellten ein dreidimensionales Modell seiner Enzymstruktur und seines aktiven Zentrums, um den Reaktionsweg nachzuvollziehen. Schließlich lag alles auf dem Tisch: Dem Blatt Papier von damals gesellte sich ein ganzer Stapel an Papieren hinzu, die in einer Publikation in der Fachzeitschrift PNAS mündeten.

"Sehr überraschend war dabei, dass das Phosphit bei seiner Oxidation offenbar direkt an die Energieträger-Vorstufe AMP gekoppelt wird, wobei der Energieträger ADP entsteht. In einer Folgereaktion werden aus zwei der gebildeten ADP ein ATP hergestellt, von dem der Organismus schließlich lebt." sagt Nicolai Müller.

Ein Überbleibsel von vor 2,5 Milliarden Jahren

Eine neue Art des Energiestoffwechsels nachzuweisen ist an sich schon ein großer wissenschaftlicher Erfolg. Doch wie das Forschungsteam annimmt, ist diese Art des Stoffwechsels keineswegs neu entstanden, sondern sehr alt, ja sogar uralt: rund 2,5 Milliarden Jahre alt.

"Es wird angenommen, dass Phosphor in der Frühzeit der Evolution, als die Erde sich abkühlte, durchaus noch in größerem Umfang in partiell reduzierter Form vorlag und erst dann allmählich oxidiert wurde. Deshalb passt dieser Stoffwechsel, den wir nun neu gefunden haben, sehr gut in die frühe Phase der Evolution von Mikroorganismen.", so Bernhard Schink.

Der biochemische Mechanismus, den das Bakterium für seinen Stoffwechsel nutzt, ist also nicht neu entstanden, sondern hat sich mit hoher Wahrscheinlichkeit aus den Urzeiten unseres Planeten erhalten: damals, als das Leben auf unserem Planeten seinen Anfang nahm und die ersten Mikroorganismen sich aus anorganischen Verbindungen wie Phosphit speisen mussten. So geben die neuen wissenschaftlichen Befunde zugleich Hinweise auf die frühe biochemische Evolution auf unserem Planeten. Sie entschlüsseln ferner einen biochemischen Mechanismus, der Leben an sehr lebensfeindlichen Orten möglich macht, möglicherweise sogar auf fremden Planeten.

Wer hätte Ende der 1980er-Jahre gedacht, dass ein Blatt Papier all dies in Gang setzen würde ...

» Originalpublikation

Quelle: Universität Konstanz