Analytik NEWS
Das Online-Labormagazin
28.06.2022

03.06.2022

Mikrowelle statt Hochofen: Alternative für energieintensive Produktionsverfahren

Teilen:


Verfahrenstechniker der Otto-von-Guericke-Universität Magdeburg wollen die Mikrowellentechnologie als umweltschonende Alternative für energieintensive und schwer kontrollierbare Produktionsverfahren entwickeln. In besonders ausgestatteten Geräten untersuchen sie unter kontrollierten Laborbedingungen chemische Prozesse, wie sie unter anderem in Hochtemperaturöfen stattfinden.

Ziel des Forschungsvorhabens ist es, energieintensive Großproduktionsprozesse effizienter und umweltfreundlicher zu gestalten, den enormen Verbrauch fossiler Brennstoffe sowie den damit verbundenen CO2-Ausstoß signifikant zu reduzieren. Zurzeit verbrauchen, laut Martin Dehli in "Der Energieverbrauch in Deutschland", großindustrielle Produktionsverfahren bis zu 19 Prozent des deutschen Energiebedarfs allein für die Bereitstellung von Prozesswärme.

Das Forschungsvorhaben der Verfahrenstechnikerinnen Junior-Professorin Dr.-Ing. Alba Dieguez Alonso und Dr.-Ing. Nicole Vorhauer-Huget ist ein Teilprojekt des Sonderforschungsbereichs SFB/ Transregio 287 BULK-REACTION. In dem von der Deutschen Forschungsgemeinschaft DFG mit fast 10 Millionen Euro unterstützten Vorhaben entwickeln rund 40 Wissenschaftler der Universitäten Magdeburg, Bochum und Kiel aus den Ingenieurwissenschaften, der Informatik und der Physik aufwändige Computersimulationsmodelle für Großproduktionsverfahren. Anschließend werden sie diese Simulationen durch experimentelle Messverfahren überprüfen.

Großproduktionen mit nachhaltiger Energie

"Konventionelle Produktionsprozesse in Hochtemperaturöfen, zum Beispiel zur Herstellung von Keramik, Zement, Ziegeln oder Stahl, verbrauchen weltweit eine enorme Menge an Energie, die derzeit noch fast ausschließlich aus fossilen Ressourcen stammt", so Junior-Professorin Dr.-Ing. Alba Dieguez Alonso. Das führe zu hohen Kosten und CO2-Emissionen. "Wir suchen nach Wegen, den wachsenden Energieverbrauch durch fossile Brennstoffe bei diesen Großproduktionsprozessen zu senken", ergänzt ihre Kollegin Dr.-Ing. Nicole Vorhauer-Huget. "Unsere Alternative heißt: Mikrowellentechnologie."

Wie in haushaltsüblichen Geräten, könnten damit statt fossiler Brennstoffe erneuerbare Energieträger wie Wind und Sonne eingesetzt werden, so die Verfahrenstechnikerin weiter. Mikrowellen wirkten darüber hinaus sehr schnell, das wisse jeder aus der Küche. "So könnte künftig auch bei Großproduktionsprozessen Zeit und damit viel Energie eingespart werden."

Allerdings sei die Interaktion der Mikrowellen mit den Materialien, die sich bei hohen Temperaturen durch chemische Reaktion im Prozess ständig verändern, größtenteils noch nicht gut verstanden. "Unser Forschungsansatz ist es deshalb, experimentell gewonnene Daten über Materialien, Reaktionen sowie dieelektrische Eigenschaften - die bestimmen, wie gut sich ein Material mit elektromagnetischer Strahlung erwärmen lässt - zu sammeln." Das stelle allerdings eine große Herausforderung dar, unterstreicht Junior-Professorin Dr.-Ing. Alba Dieguez Alonso.

"Viele während der Prozesse in der Mikrowelle auftretende Vorgänge sind sehr schnell und laufen dazu im Mikrometer- bis Nanometerbereich ab. Zudem ist der Mikrowellenreaktor durch ein Metallgehäuse abgeschirmt und in ihm herrschen Temperaturen über 600 °C." Der speziell vom Unternehmen Püschner GmbH + CO KG Mikrowellenenergietechnik für das Forschungsteam entwickelte Reaktor sei zwar ausgerüstet mit Wärmebildkameras, Waage, Druck- und Temperaturfühlern, zählt Alonso auf. Das reiche jedoch nicht aus, um die Abläufe wissenschaftlich fundamental zu erfassen oder für verschiedene Bedingungen und Materialien vorherzusagen.

"Hierfür sind wiederum zusätzlich aufwändige mathematische Computermodelle erforderlich, die wir jetzt entwickeln wollen. Damit können wir alle bisher nicht messbaren Interaktionen zwischen Materialien, Reaktionen und elektromagnetischen Wellen auf verschiedensten Größenskalen erfassen", ergänzt ihre Kollegin Vorhauer-Huget. "Wir beobachten also die Eigenschaften des Ausgangsstoffs: Wie schnell erwärmt er sich? Welche Prozessbedingungen müssen geschaffen werden, damit die Reaktionen möglichst effizient ablaufen? Davon lassen sich dann wiederum bestimmte Annahmen über die Prozesssteuerung während der Produktion ableiten und Aussagen zur Produktqualität treffen."

Letztendlich bestimmen die Prozessparameter in einem Hochtemperaturofen sowohl die Produkteigenschaften wie Porosität und Festigkeit als auch die chemische Zusammensetzung von Produktgasen und -flüssigkeiten. "Da die Mikrowellenerwärmung im Vergleich zu konventionellen Verfahren mit heißen Gasen oder Wärmestrahlung grundsätzlich andere Prozessbedingungen ermöglicht, könnten künftig Produkteigenschaften gezielt verändert und optimiert werden. Auf der Grundlage der Forschung könnten also in Zukunft neue Verfahren zur Gewinnung nachhaltiger Produkte bereitstehen."

Quelle: Universität Magdeburg