Elektronische Eigenschaften dotierter polyzyklischer aromatischer Kohlenwasserstoffe
Mahns, Benjamin - Technische Universität Dresden (2015)
In der vorliegenden Arbeit wurde die elektronische Struktur verschiedener undotierter und mit Alkalimetallen beziehungsweise 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethan (F 4 TCNQ) dotierter, polyzyklischer aromatischer Kohlenwasserstoffe (PAK) untersucht. Diese Untersuchungen waren motiviert durch verschiedene Veröffentlichungen in denen supraleitendes Verhalten an unterschiedlichen alkalimetalldotierten PAK beschrieben wurde.
Erste Studien erfolgten an undotiertem 1,2:8,9-Dibenzopentacen (DBP) und Pentacen unter Nutzung von Photoelektronenspektroskopie (PES), Elektronenenergieverlustspektroskopie (EELS) und Dichtefunktionaltheorie (DFT). Die spektroskopischen Methoden zeigten für beide Materialien eine große Ähnlichkeit der elektronischen Zustände, vor allem im niederenergetischen Bereich, welche durch die theoretischen Ergebnisse bestätigt wurde. Die elektronische Ähnlichkeit beider Materialien ist im starken Gegensatz zu dem in der Literatur bei Dotierung beobachteten Verhalten, bei dem Pentacen zum Mott-Isolator wird, während DBP Supraleitung zeigt.
Weitere Untersuchungen erfolgten an Picen und Coronen. Bandstrukturrechnungen zeigten, dass Picen vermutlich ein stark korreliertes Elektronensystem besitzt. Neben dem mit PES ermittelten Ionisationspotential und der Austrittsarbeit waren auch die mit EELS gemessenen optischen Bandlücken der beiden Materialien sehr ähnlich. Unterschiede zeigten sich hingegen vor allem in der Dichte der gemessenen Zustände von Picen und Coronen am Ferminiveau. Bei der Untersuchung der elektronischen Eigenschaften von mit Kalium-dotierten Picen und Coronen wurde trotz der erfolgreichen Dotierung in keinem der untersuchten Filme eine Zustandsdichte am Ferminiveau beobachtet somit wurde auch keiner der untersuchten Filme metallisch. Dasselbe Verhalten konnte auch für Natrium-dotierte Filme beobachtet werden. Eine Diskussion dieses Ergebnisses, welches im Gegensatz zu der von anderen Gruppen in dotierten Molekülen beobachteten Supraleitung steht, erfolgte im Hinblick auf die Bildung unterschiedlich dotierter Phasen, Elektron-Phonon-Kopplung, der Formierung von Bi-Polaronen und Korrelationseffekten.
Für ein weitergehendes Verständnis der dotierungsinduzierten elektronischen Eigenschaften in den untersuchten Molekülen wurden diese nicht nur mit Alkalimetallen, sondern teilweise auch mit elektronenziehenden Molekülen wie F 4 TCNQ interkaliert. Dabei entstanden Kristalle verschiedener Ladungstransfersalze. Eine ausführliche Charakterisierung erfolgte für Picen/F 4 TCNQ-Kristalle, welche im Rahmen dieser Arbeit zum ersten Mal hergestellt und untersucht wurden. Dabei wurde zunächst deren Kristallstruktur mit Röntgendiffraktometrie (XRD) bestimmt. Eine Abschätzung der Größe des Ladungstransfers innerhalb der Molekülpaare aus Picen/ F 4 TCNQ erfolgte über Infrarot- und Bindungslängendaten, die auf diese Weise gefunden Werte wurden zusätzlich durch DFT-Rechnungen untermauert. Transportmessungen zeigten außerdem, dass die hergestellten Kristalle entlang ihrer Hauptwachstumsrichtung Isolatoren sind. Die Untersuchung der elektronischen Eigenschaften wurde mit EELS und PES an Picen/ F 4 TCNQ -Dünnfilmen durchgeführt, welche durch die Verdampfung der Einkristalle hergestellt wurden. Die Molekülpaare zeigen einen Ladungstransfer, der neue elektronische Anregungen im Niederenergiebereich der mit EELS gemessenen Verlustfunktion hervorruft.
Im weiteren Verlauf der Arbeit erfolgte eine Diskussion bezüglich des Charakters und der Lokalisierung dieser neuen Anregungen. Bei den PES-Messungen zeigte sich der Ladungstransfer durch energetische Verschiebungen in den gemessen Rumpfniveauspektren sowie durch im Vergleich zu den reinen Materialien deutlich veränderte Ionisationspotentiale. Trotz des erfolgreichen Ladungstransfers und der damit verbundenen Füllung von unbesetzten Zuständen mit Elektronen in F 4 TCNQ wurde jedoch in den Valenzbandspektren keine Emission am Ferminiveau beobachtet. DFT-Rechnungen ermöglichten schließlich Aussagen über den Charakter des Ladunstransfers und die daraus resultierende, fehlende Zustandsdichte am Ferminiveau.